

# Nonacarbonylbis(µ3-methylidin)trieisen

## Dieter Lentz\* und Heike Michael

Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstraße 34-36, D-1000 Berlin 33

Eingegangen am 6. März 1990

Key Words: Alkylidyne complexes / Clusters / Halogen exchange reaction / Iron complexes

#### $Nona carbonylbis (\mu_3 - methylidyne) triiron$

Halogen exchange reaction in  $Fe_3(CO)_9(\mu_3-CF)_2$  (1) with BBr<sub>3</sub> (3) yields  $Fe_3(CO)_9(\mu_3-CBr)_2$  (4), which can be converted by  $(C_4H_9)_3SnH$  (5) into  $Fe_3(CO)_9(\mu_3-CH)_2$  (6). 6 is the parent compound of the bis(alkylidyne)triiron clusters. Selective reduction of the CBr moiety in  $Fe_3(CO)_9(\mu_3-CBr)(\mu_3-CCO_2CH_3)$  (7) results in the formation of  $Fe_3(CO)_9(\mu_3-CH)(\mu_3-CCO_2CH_3)$  (8). The structure of 8 has been elucidated by an X-ray crystal-structure determination.

Seit der Synthese des ersten Bis(alkylidin)trieisen-Clusters durch Wilkinson et al.<sup>1</sup>), hat sich die Chemie dieser Verbindungsklasse rasch entwickelt<sup>2-4</sup>). Insbesondere die Reaktionen von Fe<sub>3</sub>(CO)<sub>9</sub>( $\mu_3$ -CF)<sub>2</sub><sup>3)</sup> und Fe<sub>3</sub>(CO)<sub>9</sub>( $\mu_3$ -CCH<sub>3</sub>)( $\mu_3$ -COC<sub>2</sub>H<sub>3</sub>)<sup>4)</sup> wurden genauer untersucht, und es konnten interessante Reaktionen beobachtet werden, die unter C-C-Bindungsknüpfung zum Aufbau neuer Liganden, wie z. B. des Difluorethin-Liganden führten<sup>3</sup>). Auch über die Bildung kationischer Ketenylidin-Cluster durch Reaktion von Fe<sub>3</sub>-(CO)<sub>9</sub>( $\mu_3$ -CF)<sub>2</sub> mit Lewis-Säuren wurde kürzlich berichtet<sup>5</sup>).

Uns ist es nun gelungen, die Stammverbindung der Bis(alkylidin)trieisen-Cluster, Nonacarbonylbis(methylidin)trieisen (6), in einer zweistufigen Synthese darzustellen. Fe<sub>3</sub>(CO)<sub>9</sub>( $\mu_3$ -CF)<sub>2</sub> (1) reagiert mit Bortribromid (2) unter langsamem Fluor/Brom-Austausch zu Fe<sub>3</sub>(CO)<sub>9</sub>( $\mu_3$ -CBr)<sub>2</sub> (4). Die Reaktion verläuft so langsam, daß es sogar möglich ist, die gemischtsubstituierte Verbindung 3 <sup>19</sup>F-NMR-spektroskopisch ( $\delta = 81.2$ ) nachzuweisen. Reduktion der CBr-Gruppierungen mit Tributylstannan (5) führt in glattverlaufender Reaktion zu Fe<sub>3</sub>(CO)<sub>9</sub>( $\mu_3$ -CH)<sub>2</sub> (6). Die Reaktion von Fe<sub>3</sub>-(CO)<sub>9</sub>( $\mu_3$ -CBr)( $\mu_3$ -CCO<sub>2</sub>CH<sub>3</sub>) (7) mit 5 ergibt unter selektiver Reduktion der CBr-Gruppe den Cluster 8. Die neuen Verbindungen 4, 6 und 8 sind durch ihre spektroskopischen Daten vollständig charakterisiert. Auffallend ist die extreme Tieffeldverschiebung der Methylidin-Protonen in den Verbindungen 6 und 8. Versuche eines H/D-Austauschs mit D<sub>2</sub>O in der Verbindung 8 zeigten keine besondere CH-Acidität, so daß diese starke Tieffeldverschiebung auf den Einfluß dreier Metall-Atome zurückzuführen sein dürfte, der sich auch in der Tieffeldlage der <sup>13</sup>C-Resonanzen der Alkylidin-Kohlenstoff-Atome und der <sup>19</sup>F-Resonanzen von 1 und 3 äußert. Von 8 liegt ferner eine Kristallstrukturanalyse (Abb. 1) vor.

8 enthalt als Strukturelement ein gleichschenkliges Dreieck von Eisen-Atomen, das von den beiden  $\mu_3$ -Alkylidin-Gruppen überbrückt ist. Die  $\mu_3$ -Alkylidin-Gruppen sind geringfügig asymmetrisch gebunden. So findet man zum Methylidin-Kohlenstoff-Atom C1 einen kurzen und zwei etwas längere Fe-C-Abstände, während zum Alkylidin-Kohlenstoff-Atom C2 genau die entgegengesetzte Situation beobachtet wird. Die Fe-C-Abstände zum Methylidin-Kohlenstoff-Atom C1 sind generell etwas kürzer als zum Alkylidin-Kohlenstoff-Atom C2. Die Asymmetrie der Brücken ist jedoch wesentlich weniger ausgeprägt als in Fe<sub>3</sub>(CO)<sub>6</sub>( $\eta^6$ -C<sub>6</sub>H<sub>6</sub>)( $\mu_3$ -CBr)( $\mu_3$ -CCO<sub>2</sub>Et)<sup>59</sup> oder gar Fe<sub>3</sub>(CO)<sub>9</sub>( $\mu_3$ -CNEt<sub>2</sub>)<sup>2b</sup>.

Durch die in letzter Zeit entwickelten Synthesemethoden sind nun die bekannten Bis(alkylidin)-Cluster des Eisens wesentlich zahl-



Chem. Ber. 123 (1990) 1481-1483 (C) VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1990 0009-2940/90/0707-1481 \$ 03.50+25/0

reicher als die zuerst entdeckten isomeren Alkin-Cluster Fe<sub>3</sub>(CO)<sub>9</sub>- $(\mu_3-\eta^2-RC\equiv CR)^{6}$ . Insbesondere fehlt hier noch der Grundkörper Fe<sub>3</sub>(CO)<sub>9</sub>( $\mu_3-\eta^2-HC\equiv CH$ ).



Abb. 1. Struktur von 8 im Kristall; ausgewählte Bindungsabstände [pm] und -winkel [°]: Fe1 – Fe2 251.6(1), Fe1 – Fe3 250.1(1), Fe2 – Fe3 251.8(1), Fe1 – C1 192.6(5), Fe2 – C1 190.7(5), Fe3 – C1 192.5(5), Fe1 – C2 195.3(5), Fe2 – C2 194.5(5), Fe3 – C2 194.3(5), C2 – C3 147.6(7), C3 – O1 117.9(6), C3 – O2 132.6(6), C4 – O2 146.2(7), Fe3 – Fe1 – Fe2 60.2(0), C2 – Fe1 – C1 82.5(2), Fe3 – Fe2 – Fe1 59.6(0), C2 – Fe2 – C1 83.1(2), Fe1 – C1 – Fe2 82.1(2), Fe3 – Fe2 – Fe1 59.6(0), C2 – Fe2 – C1 83.1(2), Fe1 – C1 – Fe2 82.1(2), Fe1 – C1 – Fe3 81.0(2), Fe2 – C1 – Fe3 82.1(2), C3 – C2 – Fe1 128.8(3), C2 – Fe3 – C1 82.7(2), C3 – C2 – Fe2 J33.8(4), C3 – C2 – Fe3 132.8(4), Fe1 – C2 – Fe2 80.4(2), Fe1 – C2 – Fe3 79.9(2), Fe2 – C2 – Fe3 80.7(2), C2 – C3 – O1 125.6(5), C2 – C3 – O2 111.6(4), O1 – C3 – O2 122.8(5), C3 – O2 – C4 116.2(5)

Wir danken dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft für die Förderung dieser Arbeit. Herrn Prof. Dr. J. Fuchs danken wir für seine Hilfe bei der Kristallstrukturanalyse.

## **Experimenteller** Teil

IR: Perkin-Elmer 883. – <sup>1</sup>H-, <sup>19</sup>F-, <sup>13</sup>C-NMR: Jeol FX 90 Q. – MS: Varian MAT 711. – Alle Versuche wurden unter Argon mit wasserfreien Lösungsmitteln durchgeführt. – Fe<sub>3</sub>(CO)<sub>9</sub>( $\mu_3$ -CF)<sub>2</sub><sup>3</sup> (1) und Fe<sub>3</sub>(CO)<sub>9</sub>( $\mu_3$ -CBr)( $\mu_3$ -CCO<sub>2</sub>CH<sub>3</sub>)<sup>5</sup> (7) wurden nach Literaturvorschriften dargestellt.

 $Fe_3(CO)_9(\mu_3-CBr)_2$  (4): In einem 100-ml-Kolben mit Teflon-Hahn werden 200 mg (0.42 mmol)  $Fe_3(CO)_9(\mu_3-CF)_2$  (1) und 0.4 ml (4 mmol) BBr<sub>3</sub> (2) in 50 ml CH<sub>2</sub>Cl<sub>2</sub> gelöst. Es wird 24 h bei Raumtemp. gerührt. Nach Entfernen des BF<sub>3</sub> i. Vak., des Lösungsmittels und des überschüssigen 2 wird in wenig CH<sub>2</sub>Cl<sub>2</sub> gelöst und durch Kieselgel (Woelm 63–200 µm) filtriert. Es wird im Rotationsverdampfer bis zur beginnenden Kristallisation eingeengt und bei  $-78 \,^{\circ}$ C kristallisiert; Ausb. 188 mg (74%) 4 (orangerote Kristalle), Zers.-P. ca. 120  $^{\circ}$ C. – IR (Hexan):  $\tilde{v} = 2061 \text{ cm}^{-1}$  (vs), 2042 (s), 2004 (s). – <sup>13</sup>C-NMR (CD<sub>2</sub>Cl<sub>2</sub>,  $\delta = 53.61$ ):  $\delta = 206.6$  (CO), 326.1 (CBr). – MS (80 eV): m/z = 604 [M<sup>+</sup>], 576 [M<sup>+</sup> – CO], 408 [M<sup>+</sup> – 7CO], 380 [M<sup>+</sup> – 8CO], 352 [M<sup>+</sup> – 9CO] und weitere kleinere Fragment-Ionen.

C<sub>11</sub>Br<sub>2</sub>Fe<sub>3</sub>O<sub>9</sub> Ber. 601.5957 Gef. 601.5952 (MS)

*Fe*<sub>3</sub>(*CO*)<sub>9</sub>( $\mu_3$ -*CH*)<sub>2</sub> (6): 100 mg (0.17 mmol) 4 und 0.21 ml (0.66 mmol) Bu<sub>3</sub>SnH (5) werden in 30 ml Hexan gelöst. Es wird zum Rückfluß erhitzt und der Reaktionsverlauf dünnschichtchromatographisch verfolgt (Kieselgel 60, Pentan). Nach beendeter Reaktion wird durch Kieselgel filtriert, i. Vak. bis zur Trockene eingeengt und in möglichst wenig Pentan gelöst. Bei  $-20^{\circ}$ C kristallisieren 23 mg (30%) 6 (orangerote Kristalle), Schmp. 106–107°C. – IR (Hexan):  $\tilde{v} = 2048 \text{ cm}^{-1}$  (vs), 2925 (s), 1998 (m). – <sup>1</sup>H-NMR [CDCl<sub>3</sub>,  $\delta$ (CHCl<sub>3</sub>) = 7.24]:  $\delta = 15.92$ . – <sup>13</sup>C{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>,  $\delta = 77.1$ ):  $\delta = 207.8$  (CO), 321.2 (CH). – MS (80 eV): *m/z* = 446 [M<sup>+</sup>], 418 [M<sup>+</sup> – CO], 390 [M<sup>+</sup> – 2 CO], 362 [M<sup>+</sup> – 3 CO], 334 [M<sup>+</sup> – 4 CO], 306 [M<sup>+</sup> – 5 CO], 278 [M<sup>+</sup> – 6 CO], 250 [M<sup>+</sup> – 7 CO], 222 [M<sup>+</sup> – 8 CO], 194 [M<sup>+</sup> – 9 CO].

## C<sub>11</sub>H<sub>2</sub>Fe<sub>3</sub>O<sub>9</sub> Ber. 445.7747 Gef. 445.7768 (MS)

 $Fe_3(CO)_9(\mu_3-CH)(\mu_3-CCO_2CH_3)$  (8): 115 mg (0.2 mmol) Fe<sub>3</sub>(CO)<sub>9</sub>(µ<sub>3</sub>-CBr)(µ<sub>3</sub>-CCO<sub>2</sub>CH<sub>3</sub>) (7) und 0.15 ml (0.25 mmol) 5 werden in 50 ml Hexan zum Rückfluß erhitzt. Die Reaktion wird dünnschichtchromatographisch [Kieselgel 60, Pentan/Dichlormethan (2:1)] verfolgt. Nach beendeter Reaktion wird durch Kieselgel filtriert und das Produkt mit CH2Cl2 eluiert. Nach Entfernen des Lösungsmittels i. Vak. wird in wenig Pentan gelöst und bei -20 °C kristallisiert; Ausb. 46 mg (46%) 8 (orangerotc Kristalle), Schmp. 91-92 °C. - IR (Hexan):  $\tilde{v} = 2060$  cm<sup>-1</sup> (vs), 2055 (vs), 2033 (s), 2003 (m) (CO); (KBr):  $\tilde{v} = 2050 \text{ cm}^{-1}$  (vs), 2015 (vs), 1988 (vs), 1975 (vs) (CO), 1688 (s) (CO<sub>2</sub>R). - <sup>1</sup>H-NMR [CDCl<sub>3</sub>,  $\delta$ (CHCl<sub>3</sub>) = 7.24]:  $\delta = 4.23$  (CH<sub>3</sub>), 16.16 (CH).  $- {}^{13}C{}^{1}H{}$ -NMR (CDCl<sub>3</sub>,  $\delta = 77.1$ ):  $\delta = 53.6$  (CH<sub>3</sub>), 181.1 (CCO<sub>2</sub>CH<sub>3</sub>), 206.8 (CO), 320.6 (CCO<sub>2</sub>CH<sub>3</sub>), 326.4 (CH). - MS (80 eV): m/z = 504 [M<sup>+</sup>], 476 [M<sup>+</sup> - CO], 448  $[M^+ - 2CO]$ , 420  $[M^+ - 3CO]$ , 392  $[M^+ - 4CO]$ , 364  $[M^+ - 4CO]$ 5 CO], 336 [ $M^+$  - 6 CO], 308 [ $M^+$  - 7 CO], 280 [ $M^+$  - 8 CO], 252 [M<sup>+</sup> - 9CO] und kleinere Fragment-Ionen.

 $C_{13}H_4Fe_3O_{11}$  Ber. 503.7802 Gef. 503.7804 (MS)

Tab. 1. Fraktionelle Atomkoordinaten und verfeinerte Parameter der anisotropen Temperaturfaktoren  $B_{eq}$  von 8

| Atom | x/a        | y/b        | z/c        | Be q |
|------|------------|------------|------------|------|
| Fe1  | 0.1236(1)  | 0.4059(1)  | 0.2704(1)  | 2.61 |
| Fe2  | 0.3412(1)  | 0.2506(1)  | 0.3285(1)  | 2.60 |
| Fe3  | 0.0542(1)  | 0.1387(1)  | 0.2570(1)  | 2.51 |
| C1   | 0.1597(6)  | 0.2685(6)  | 0.3969(5)  | 2.74 |
| C2   | 0.1901(6)  | 0.2602(5)  | 0.1708(4)  | 2.40 |
| C3   | 0.2044(6)  | 0.2623(5)  | 0.0395(5)  | 2.72 |
| C4   | 0.3841(10) | 0.2858(10) | -0.0956(7) | 6.54 |
| C11  | 0.1496(7)  | 0.5367(6)  | 0.3988(5)  | 3.56 |
| C12  | 0.1791(7)  | 0.5337(6)  | 0.1605(6)  | 3.51 |
| C13  | -0.0870(7) | 0.4033(6)  | 0.2207(5)  | 3.71 |
| C21  | 0.4724(7)  | 0.4148(7)  | 0.3395(5)  | 3.39 |
| C22  | 0.4548(7)  | 0.1460(7)  | 0.2465(6)  | 3.70 |
| C23  | 0.4267(7)  | 0.1928(7)  | 0.4822(6)  | 3.79 |
| C31  | -0.0948(7) | 0.0985(6)  | 0.1094(5)  | 3.27 |
| C32  | 0.1288(7)  | -0.0306(6) | 0.2643(5)  | 3.50 |
| C33  | -0.0847(7) | 0.0886(6)  | 0.3555(5)  | 3.54 |
| 01   | 0.0970(5)  | 0.2442(6)  | -0.0483(4) | 5.46 |
| 02   | 0.3556(5)  | 0.2891(5)  | 0.0306(4)  | 4.78 |
| 011  | 0.1627(6)  | 0.6166(5)  | 0.4804(4)  | 5.45 |
| 012  | 0.2142(6)  | 0.6113(5)  | 0.0909(5)  | 6.05 |
| 013  | -0.2211(5) | 0.4021(6)  | 0.1917(5)  | 5.58 |
| 021  | 0.5568(5)  | 0.5196(5)  | 0.3470(4)  | 4.72 |
| 022  | 0.5256(6)  | 0.0786(6)  | 0.1999(5)  | 5.85 |
| 023  | 0.4773(6)  | 0.1587(5)  | 0.5782(4)  | 5.69 |
| 031  | -0.1935(5) | 0.0737(5)  | 0.0223(4)  | 4.49 |
| 032  | 0.1773(6)  | -0.1368(5) | 0.2731(4)  | 5.20 |
| 033  | -0.1676(5) | 0.0575(6)  | 0.4196(4)  | 5.67 |
|      |            |            |            |      |

Kristallstrukturuntersuchung von 8: Orangeroter Kristall; ca. 0.26 ×  $0.22 \times 0.10$  mm; triklin;  $P\bar{1}$ ; a = 865.8(2), b = 941.0(2), c =1099.7(2) pm;  $\alpha = 91.40(2), \beta = 102.50(2), \gamma = 97.42(2)^{\circ}; V =$ 8.661 · 10<sup>8</sup> pm<sup>3</sup>; Z = 2,  $\varrho_{ber.} = 1.93 \text{ g} \cdot \text{cm}^{-3}$ ; Stoe-Vierkreisdiffraktometer; Graphit-Monochromator,  $\lambda(Mo-K_{\alpha}) = 71.069$  pm;  $4^{\circ} \le 2\Theta \le 50^{\circ}, -8 \le h \le 10, -9 \le k \le 11, -13 \le l \le 8;3051$  Reflexe, davon 2380 mit  $F_o > 3\sigma(F_o)$ ; empirische Absorptionskorrektur ( $\mu = 25.6 \text{ cm}^{-1}$ ) mit dem Programm DIFABS<sup>7</sup>; Strukturlösung mit Patterson-Methoden (SHELXS 868); full-matrix-least-squares-Verfeinerung (SHELX 769) mit anisotropen Temperaturfaktoren, H-Atome isotrop, Methyl-Gruppe als starre Gruppe; 252 verfeinerte Parameter; R = 0.044,  $R_w = 0.045$ ,  $w = [\sigma^2(F_0) + 0.0006$ .  $F_{o}^{2}$ ]<sup>-1</sup>. Atomkoordinaten und Temperaturfaktoren sind in Tab. 1 zusammengestellt. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54529, der Autorennamen und des Zeitschriftenzitats angefordert werden.

CAS-Registry-Nummern

1: 94621-00-8 / 2: 10294-33-4 / 3: 126821-89-4 / 4: 126821-90-7 / 5: 688-73-3 / 6: 126821-91-8 / 7: 121988-36-1 / 8: 126821-92-9

- <sup>1)</sup> W.-K. Wong, K. W. Chiu, G. Wilkinson, A. M. R. Galas, M. Thornton-Pett, M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1983 1557.
- **1983** 1557. <sup>2) 2a)</sup> J. A. Hriljac, D. F. Shriver, J. Am. Chem. Soc. **109** (1987) 6010.  $-^{2b)}$  E. Carbtrera, J. C. Daran, Y. Jeannin, J. Chem. Soc., Chem. Commun. **1988**, 607.  $-^{2c)}$  D. Nuel, R. Mathieu, Orga-nometallics 7 (1988) 16.  $-^{2d)}$  J. Suades, F. Dahan, R. Mathieu, Organometallics 7 (1988) 47.  $-^{2c)}$  A. Aradi, F.-W. Grevels, C. Krüczer P. Pache. Organometallics 7 (1988) 812 C. Krüger, E. Raabe, Organometallics 7 (1988) 812
- <sup>3)</sup> D. Lentz, I. Brüdgam, H. Hartl, Angew. Chem. **97** (1985) 115; Angew. Chem. Int. Ed. Engl. **24** (1985) 119; D. Lentz, H. Michael, Angew. Chem. **100** (1988) 871; Angew. Chem. Int. Ed. Engl. **27** (1988) 845; D. Lentz, H. Michael, Chem. Ber. 121 (1988) 1413; D. Lentz, H. Michael, Angew. Chem. 101 (1989) 330; Angew. Chem. Int. Ed. Engl. 28 (1989) 321.
- 4) D. Nuel, F. Dahan, R. Mathieu, J. Am. Chem. Soc. 107 (1985) 1658.
- <sup>1030.</sup>
  <sup>5)</sup> D. Lentz, H. Michael, *Inorg. Chem.* 28 (1989) 3396.
  <sup>6)</sup> W. Hübel, E. H. Braye, A. Clauss, E. Weiss, U. Küerke, D. A. Brown, G. S. D. King, C. Hoogzand, *J. Inorg. Nucl. Chem.* 9 (1959) 204; J. F. Blount, L. F. Dahl, C. Hoogzand, W. Hübel, *J. Clause* 28 (1066) 202; B. Scang, A. Tiripicchio, P. Braune, *Am. Chem. Soc.* 88 (1966) 292; E. Sappa, A. Tiripicchio, P. Braunstein, *Chem. Rev.* 83 (1983) 203; G. Granozzi, E. Tondello, M. Casarin, S. Aime, D. Osella, *Organometallics* 2 (1983) 430; V. Buyatti G. Granozzi, P. Goldan, C. Granozzi, S. Aime, D. Osella, *Organometallics* 2 (1983) 430; V. Busetti, G. Granozzi, S. Aime, R. Gobetto, D. Osella, Organometallics 3 (1984) 1510.
- <sup>7</sup> N. Walker, D. Stuart, Acta Crystallogr., Sect. A, **39** (1983) 158.
   <sup>8</sup> G. M. Sheldrick, SHELXS-86 (A Program for Crystal Structure
- Solution), Cambridge, 1976. <sup>9)</sup> G. M. Sheldrick, SHELX-76 (A Program for Crystal Structure Determination), Cambridge, 1976.

[88/90]